4 [9].-RICHARD P. BRENT, *Tables Concerning Irregularities in the Distribution of Primes and Twin Primes*, Computer Centre, Australian National University, Canberra, 1974, 11 computer sheets deposited in the UMT file.

These are the tables referred to repeatedly in Brent's paper [1]. The numbers $\pi(n)$, $\pi_2(n)$ and $B^*(n)$ and

$$r_i(n), s_i(n), R_i(n, n'), \rho_i(n, n')$$

for i = 1, 2, 3 are defined in [1]. They are listed in Table 1 for 533 values of n:

 $10^4 (10^4) 10^6 (10^5) 10^7 (10^6) 10^8 (10^7) 10^9 (10^8) 10^{10} (10^9) 83 \cdot 10^9.$

Table 2 (1 page long) lists $n, \pi_2(n), B(n)$, and $B^*(n)$ with some auxiliary functions for

 10^5 (10⁵) 10⁶ (10⁶) 10⁷ (10⁷) 10⁸ (10⁸) 10⁹ (10⁹) 10¹⁰ (10¹⁰) 8 \cdot 10¹⁰:

The author indicates that he has much more detailed tables and is continuing to 10^{11} .

Section 3 of [1] ends with the same conclusion given earlier in our [2]: that the unpredictable fluctuations of $\pi_2(n)$ around the Hardy-Littlewood approximation makes it difficult to compute Brun's constant accurately. But his Fig. 3 allows for a posteriori judgment; although we do not know where $s_3(n)$ is going, we know where it's been! We see that Fröberg's low value at $\log_{10}n = 6.02$, our high value at $\log_{10}n = 7.51$ and Bohman's low value at $\log_{10}n = 9.30$ all correlate (inversely) with the peaks and valleys of Fig. 3. In fact, Fig. 3 between $\log_{10}n = 6.63$ and 7.19 gives a crude, distorted, upside-down version of our Fig. 1 [2] and $\log_{10}n$ between 7.19 and 7.51 continues with our Fig. 2. Thus, for Brun's constant, it does appear that $n = 8 \cdot 10^{10}$ is a good time to quit since $s_3(n)$ is then very small.

Concerning the negative peaks in Brent's Fig. 1 at $\log_{10}n = 8.04$ and 8.25, it would be nice to know when they are exceeded. As Brent is aware, if a likely n were known that is not too large, one could restart his tables of $r_i(n)$ and $s_i(n)$ for i = 1, 2 by computing a fiducial mark $\pi(n)$ by Lehmer's method.

D. S.

2. DANIEL SHANKS & JOHN W. WRENCH, JR., "Brun's constant," Math. Comp., v. 28, 1974, pp. 293-299; "Corrigendum", ibid, p. 1183.

5 [9].-CARL-ERIK FRÖBERG, Kummer's Förmodan, Lund University, 1973, 133 pages of computer output deposited in the UMT file.

The Kummer Sum

(1)
$$S_p = \sum_{n=0}^{p-1} \exp((2\pi i n^3/p)) = 1 + 2 \sum_{n=1}^{(p-1)/2} \cos((2\pi n^3/p))$$

^{1.} RICHARD P. BRENT, "Irregularities in the distribution of primes and twin primes," *Math. Comp.*, v. 29, 1975, pp. 43-56 (this issue).

for a prime $p \equiv 1 \pmod{3}$ equals one of the three real roots of

$$(2) x^3 = 3px + pA$$

where $4p = A^2 + 27B^2$, $A \equiv 1 \pmod{3}$. On the basis of only the 45 primes p < 500, Kummer conjectured that S_p occurs as the minimum, median, or maximum root of (2) in the proportions: 1, 2, 3. Subsequent work of von Neumann [1] and Emma Lehmer [2] suggested that as $p \rightarrow \infty$ there may be equidistribution instead, and Vinogradov once thought [3] that he had proven this.

Fröberg [4] computed S_p for the 8988 $p < 2 \cdot 10^5$ and found 2370, 2990, and 3628 solutions, respectively, with the maximal roots now down to 40.4%, the minimal roots up to 26.4% and the median roots remaining very close to 33%. There is deposited here a listing of these 8988 primes: p, A, B, S_p (to 6D), and an asterisk in the appropriate column labelled MIN, MED, MAX. S_p has rounding errors (example below) but this accuracy is not needed here since it suffices to know where S_p lies in the three intervals: $I_1 < -\sqrt{p} < I_2 < +\sqrt{p} < I_3$. Note also that it is unnecessary to compute A and B separately, since $A = (S_p^3 - 3pS_p)/p$.

After extrapolating the three empirical percentage functions %(P), for p < P, according to the proposed formulas

(3)
$$\%(P) = a + b \exp(-cP),$$

Fröberg conjectures that the asymptotic proportions are 4, 5, 6-that is, that the limiting percentages are $26\frac{2}{3}$, $33\frac{1}{3}$, and 40%, respectively. This reviewer is skeptical for two reasons: (A) No rationale, even heuristic, is given to support (3) and the exponential there tends to leave the purported asymptotic values a near his final empirical values at $P = 2 \cdot 10^5$. Whereas, any logarithmic function in place of (3) would make equidistribution more plausible. (B) If 4, 5, 6 are the true asymptotic proportions, it should be possible to find some reasonably simple heuristic argument that suggests these proportions. I know of none.

There are 51 cases here with A > 0, B = 1. Here the two smaller roots are nearly equal, being approximately $-\sqrt{p \mp 1\frac{1}{2}}$, while the largest root is nearly $+ 2\sqrt{p}$. If there is a difference in the ultimate proportion of MIN and MAX one might expect to see it here since the dissymmetry is maximized. One does not; there are 16, 18, and 17 cases, respectively. In the 53 cases with A < 0, B = 1, there is the opposite dissymmetry with the two larger roots close together near $\sqrt{p \mp 1\frac{1}{2}}$. One now finds 16, 19, 18 cases. (For more on the cyclic cubic fields with B = 1, see [5].) In the 74 cases here with A = +1, -2, +4 or -5, where the median root is $\approx -A/3$ while the extreme roots are $\approx \mp \sqrt{3p}$, one has the greatest symmetry. Here one finds 24, 21, and 29 cases. These are all small numbers but they seem to suggest equidistribution; certainly nothing here suggests that the MAX are 50% more numerous than the MIN. But if there is equidistribution, why are the MAX more common when p is small? A good, quantitative explanation is wanted. $|S_p|$ is bounded below by 1/3. The smallest S_p here is one of the aforementioned A = 1, namely, p = 170647, A = 1, B = 159, $S_p = -0.3333334056$. (The table lists $S_p = -0.335414$ for this p, showing that four decimals are corrupted in adding up the 85 thousand cosines.) The existence of such small S_p illustrates the marked distinction between these cubic sums and the quadratic Gauss Sums with n^2 instead of n^3 in (1). Then, $|S_p| = \sqrt{p}$, as is well known. For other recent work, see Cassels [6] and the references cited there.

D. S.

1. J. v. NEUMANN & H. H. GOLDSTINE, "A numerical study of a conjecture of Kummer," *MTAC*, v. 7, 1953, pp. 133-134.

2. EMMA LEHMER, "On the location of Gauss sums," MTAC, v. 10, 1956, pp. 194-202.

4. C.-E. FRÖBERG, "New results on the Kummer conjecture," BIT, v. 14, 1974, pp. 117-119.

5. DANIEL SHANKS, "The simplest cubic fields," Math. Comp., v. 28, 1974, pp. 1137-1152.

6. J. W. S. CASSELS, "On Kummer sums," Proc. London Math. Soc., v. 21, 1970, pp. 19-27.

6 [9].-MARIE NICOLE GRAS, "Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de *Q*," Institut de mathématiques pures, Grenoble, 1972-1973. Tables 1-4.

For any product $m = p_1 \cdot p_2 \cdot \cdots \cdot p_n$ of distinct primes $p \equiv 1 \pmod{3}$ there are 2^{n-1} distinct cyclic cubic fields of discriminant m^2 and for $m = 9 \cdot p_1 \cdot \cdots \cdot p_n$ there are 2^n such fields. Altogether there are 630 fields with m < 4000. Table 1 lists each such m with (A) its prime decomposition; (B) its appropriate representation $4m = a^2 + 27b^2$; (C) its class number h; and, in most cases, (D) tr(ϵ) and tr(ϵ^{-1}). These latter integers give the equation

$$x^3 = \operatorname{tr}(\epsilon)x^2 - \operatorname{tr}(\epsilon^{-1})x + 1$$

satisfied by the fundamental units and having a discriminant m^2k^2 for some index $k \ge 1$. When $tr(\epsilon)$ and $tr(\epsilon^{-1})$ are too large, they are omitted here since they were not obtained with the precision used. (These large units are only missing from Table 1 for some cases of h = 1 or 3 when $\zeta_k/\zeta(1)$ is relatively large because one or more small primes split in the field. The first units missing are those for m = 919 which has h = 1 and both 2 and 3 as splitting primes.)

This table, and those that follow, were computed by a new, interesting method described in Marie Gras's paper [1]. The tables are more easily extended to larger m by this method if h is large. There are known criteria for 9|h and 4|h, [2], [3]. Table 2 continues with 154 more $m < 10^4$ having 9|h while Table 3 contains 119 $m < 10^4$ having 4|h. These two tables overlap some. Sometimes, units are missing, as before.

^{3.} A. I. VINOGRADOV, "On the cubic Gaussian sum," *Izv. Akad. Nauk SSSR Ser. Mat.*, v. 31, 1967, pp. 123-148. (Russian)